

California Enterprise Architecture Framework

 Enterprise Application Integration (EAI)
Reference Architecture (RA)

Version 1.0 Final
January 2, 2014

 Enterprise Application Integration (EAI) Reference Architecture (RA)

Version 1.0 Final ii January 2, 2014

This Page is Intentionally Left Blank

 Enterprise Application Integration (EAI) Reference Architecture (RA)

Version 1.0 Final iii January 2, 2014

TABLE OF CONTENTS

1 Introduction ... 1

1.1 Purpose ... 1

1.2 Limitations .. 1

1.3 Intended Users .. 2

1.4 Document Organization .. 2

1.5 Future Directions .. 2

2 Enterprise Application Integration Overview ... 3

2.1 Definitions ... 3

2.1.1 Related Terms ... 4

2.2 Business Benefits .. 4

2.3 EAI Patterns and Usage Scenarios .. 5

2.3.1 Data Consistency Integration .. 5

2.3.2 Business Process-Based Integration .. 5

2.3.3 Composite Application Integration ... 6

2.3.4 Related Patterns ... 7

2.4 Key Capabilities of EAI Solution .. 7

2.5 Key Capabilities of an EDI Solution and Convergence of EAI and EDI... 8

2.6 Components of EAI Solution ... 9

2.7 Front-End Systems in EAI .. 10

2.8 Back-End Systems in EAI ... 11

2.9 Adaptors and Connectors in EAI ... 11

2.10 Enterprise Business Objects and Data Transformations in EAI ... 12

2.11 Enterprise Service Bus .. 13

3 EAI Reference Architecture Description .. 15

3.1 Conceptual View of EAI RA ... 15

3.2 Logical View of EAI RA ... 17

3.3 Deployment View of EAI RA .. 20

4 EAI Implementation Guidelines ... 21

4.1 Areas of Challenge in EAI .. 21

 Enterprise Application Integration (EAI) Reference Architecture (RA)

Version 1.0 Final iv January 2, 2014

4.2 Tacit Assumptions as Common Integration Pitfall .. 21

4.3 Architectural Mismatch in EAI .. 22

4.3.1 Detecting Architectural Mismatch .. 22

4.3.2 Repairing Architectural Mismatch .. 22

4.3.3 Preventing Architectural Mismatch .. 23

4.4 EAI-Related Patterns and Strategies ... 23

5 Glossary ... 25

6 References .. 26

7 Document History ... 27

 Enterprise Application Integration (EAI) Reference Architecture (RA)

Version 1.0 Final v January 2, 2014

LIST OF FIGURES
Figure 2-1 EAI Data Consistency Integration Pattern ... 5

Figure 2-2 EAI Multi-Step Process Integration Pattern ... 6

Figure 2-3 EAI Multi-Step Process Integration Pattern ... 7

Figure 2-4 EAI Components Overview ... 10

Figure 2-5 Front-End Systems in EAI ... 11

Figure 2-6 Back-End Systems in EAI .. 11

Figure 2-7 Adaptors and Connectors in EAI .. 12

Figure 2-8 Enterprise BOs and Data Transformation in EAI .. 13

Figure 2-9 ESB in EAI ... 14

Figure 3-1 EAI Reference Architecture – Conceptual View.. 16

Figure 3-2 EAI Reference Architecture – Logical View .. 18

Figure 4-1 Taxonomy of Integration Approaches ... 24

 Enterprise Application Integration (EAI) Reference Architecture (RA)

Version 1.0 Final vi January 2, 2014

LIST OF TABLES
Table 3-1 High-level interactions among EAI components ... 19

Table 7-1 Document History ... 27

 Enterprise Application Integration (EAI) Reference Architecture (RA)

Version 1.0 Final vii January 2, 2014

This Page is Intentionally Left Blank

 Enterprise Application Integration (EAI) Reference Architecture (RA)

Version 1.0 Final 1 January 2, 2014

1 Introduction

Enterprise and technology in the enterprise have been rapidly changing. The change brings
about the challenge of integration and interoperability involving disparate systems and
applications. The pieces to integrate are often based on disparate technologies and designs
where interoperability was not the primary concern. However, technological factors are not the
only source of problems. More often than not, the evolving organizational structure of the
enterprise provides a fair share of challenges for integration. With increasing complexity of the
enterprise, complexity and the number of interacting systems, the problem of making these
systems work together in a situation of changing requirements is clearly not easy – and the main
manifestations of the difficulties are time, cost, and the rate of failure in the related integration
projects.

However, over time a number of approaches have been developed with the goal of making
integration and interoperability more effective than in the past. There have been a number of
advances that make the integration task easier. On the technology side, growing adoption of
technical standards and standardized APIs is a step forward. On the architectural side, growing
adoption of the Service-Oriented architectural style promises simpler integration of application
components when they are identified using the business/functional perspective. As far as
software construction is concerned, experiences with ever growing complexity of software and
the need to develop it flexibly has led to growing adoption of incremental, iterative, or agile
software methodologies. Last but not least, the domain of Enterprise Application Integration
(EAI) gained visibility when considering integration and interoperability challenges at the
enterprise level. This document introduces EAI and presents its Reference Architecture (RA) in
the context of the California Enterprise Architecture Framework 2.0 (CEAF 2.0).

1.1 Purpose

The EAI Reference Architecture document provides guidelines and options for making
architectural decisions when implementing EAI solutions.

The objectives for the document include the following:

 To introduce key terms and distinctions relevant for the topic

 To provide inputs for creating or evaluating architectures for EAI

 To identify building blocks (architectural layers, services, components) for integrating
elements of an EAI solution

 To communicate the key architectural decisions relevant for creating or evaluating EAI
solutions

 To communicate opportunities for solution and/or platform sharing at agency, cross-agency
and/or state levels.

1.2 Limitations

The document focuses on EAI and related concepts at the enterprise architectural level in the

context of CEAF 2.0 as relevant to the Reference Architecture. It is not intended as an exhaustive

introduction to EAI or related products available in the market today. Even though intention for

the Reference Architecture is to provide examples of realization using specific products used in

production in the State, this document is not intended as a product guide.

 Enterprise Application Integration (EAI) Reference Architecture (RA)

Version 1.0 Final 2 January 2, 2014

1.3 Intended Users

The primary intended users of this document are Enterprise Architecture practitioners and other

architects that contribute to enterprise architecture. This broad group includes architects from

other domains/disciplines such as Security, Application, Information, Business, Technology,

Infrastructure, and Solution Architects. It is also beneficial to Managers, at senior or operational

levels, who are involved with EAI or related areas, such as Service-Oriented Architecture, Cloud

Computing, Identity and Access Management, and similar areas.

1.4 Document Organization

The EAI Reference Architecture documentation is organized as follows:

 Section “Enterprise Application Integration Overview” provides background for the EAI RA
by introducing descriptions and definitions of EAI, discusses the main usage scenario types
found in EAI implementations, and identifies architectural components for respective usage
scenarios.

 The section “EAI Reference Architecture Description” elaborates RA for EAI using the
following architectural views:
o The Conceptual View (in the subsection “Conceptual View of EAI ”) introduces the

necessary capabilities for a EAI architecture and how they are supported by
Architectural Building Blocks (ABBs)

o The Logical View (in the subsection “Logical View of EAI RA”) describes key interactions
among Layers and/or ABBs to realize functionality specific to EAI solutions

o The Deployment View (in the subsection “Deployment View of EAI RA”) focuses on
system topologies and deployment facets of ABBs.

 The section “Glossary” provides description of the terms and abbreviations used in the
document

 The section “References” lists publications used for preparation of the document.

1.5 Future Directions

Future evolution of the document includes the following steps:

 Addition of an example or examples of existing realization of the EAI RA

 Identification and elaboration of solution sharing opportunities

 Formulation of implementation guidelines for EAI RA

 Enterprise Application Integration (EAI) Reference Architecture (RA)

Version 1.0 Final 3 January 2, 2014

2 Enterprise Application Integration Overview

This section provides a description of EAI, including clarification of key terms and concepts. It
identifies EAI’s intended business benefits and summarizes its main usage scenarios. A set of key
capabilities of EAI solution are identified in this section and key components of the solution are
described at a high level.

2.1 Definitions

Enterprise Application Integration (abbreviated as “EAI”) is typically defined as “giving
applications that were designed independently the ability to interoperate”.

However, the expression “ability to interoperate” should not be read solely in a narrow
technical sense. The factors affecting interoperability (and consequently integration) go beyond
the simply technical and include the following groups:

 Technical interoperability challenges:
o At runtime, including interoperability of different programming languages, libraries, or

protocols
o At construction time, including differences between construction processes,

development environment and platform, build process and its outcomes

 Design and architectural interoperability challenges:
o Challenges resulting from potentially different and not necessarily compatible design or

architectural choices, including previous choices of different standards that may affect
interaction and interoperability

o Challenges resulting from assumptions about application domain, about the
components at the same level of abstraction

o Challenges resulting from assumptions about the required infrastructure or
compatibility issues between various platforms in operation

 Business process and organizational interoperability challenges, resulting from potentially
different assumptions and objectives of business functions or processes as implemented in
separate organizations which may have worked correctly for the organizations in question in
isolation but not when they get integrated.

Successful implementation of EAI requires consideration of all above types of challenges. For
discussion of these topics, please refer to the section “EAI Implementation Guidelines”. On the
purely technical side of EAI, “giving the ability to interoperate” typically involves adopting an
integration framework composed of a collection of technologies and (technical) services which
form the middleware/ application infrastructure that enables integration of systems and
applications across the enterprise.

As far as Enterprise Architecture is concerned, EAI solutions address the following primary
patterns of Application Integration:

 Data consistency integration

 Multi-step business process integration (support for both short-lived and long-lived
integration operations)

 Composite application integration - development of a composite application or a system of
systems

 Enterprise Application Integration (EAI) Reference Architecture (RA)

Version 1.0 Final 4 January 2, 2014

These patterns are further discussed in the section “EAI Patterns and Usage Scenarios” later in
the document.

2.1.1 Related Terms

The term related to EAI is Electronic Data Interchange (EDI). EDI predates EAI and is still widely
known. EDI is of interest for EAI Reference Architecture because a number of features of EDI
overlap with those in EAI, hence the need to place EDI with respect to EAI.

Electronic Data Interchange (EDI) is defined as “the transfer of structured data, by agreed
message standards, from one computer system to another without human intervention”. It can
be further characterized as follows:

 EDI implies a sequence of messages between two parties (originator and recipient)

 EDI messages contain electronic documents or business data intended to be processed by a
recipient computer system

 EDI standards stipulate the format of EDI messages

 Distinction should be made between EDI message standards and transmission, message flow
and software used to interpret and process EDI messages

Given the features of EDI described as above, EDI can be justifiably treated as a domain with its
own concerns and techniques within the broader and more general area of Enterprise
Application Integration. This is how EDI is treated in this document: as an integral part of EAI
rather than a separate or isolated architectural domain that would require its own reference
architecture.

2.2 Business Benefits

The main business objectives supported by EAI include the following:

 Productivity and flexibility improvements: EAI supports these by making available quicker
and cheaper more business functions and services than the individual systems taken in
isolation, or when they are integrated in a limited way. EAI makes it possible to create new
functions or modify old ones quickly when compared to the traditional ways of integrating
applications.

 Data and process quality improvements: EAI supports these by providing a strong
motivation and tools in identifying and removing redundancies in data, functions, and/or
business processes. EAI also helps share data and functionality across applications, systems,
or functional areas.

 Facilitating organizational mergers and system replacements: EAI supports these by
reducing complexity when substituting and merging of a number of applications or systems.
EAI also simplifies integration with systems or applications that are external to the
organization, e.g. suppliers’ systems.

When implemented correctly, EAI can bring in significant business benefits. However,
introducing an EAI solution is not risk-free. In case of EAI, most risks involved and applicable
mitigation strategies are not different from standard known managerial and technical
approaches to address them. For discussion of risks and mitigation strategies specific to EAI,
please refer to the section “EAI Implementation Guidelines”.

 Enterprise Application Integration (EAI) Reference Architecture (RA)

Version 1.0 Final 5 January 2, 2014

2.3 EAI Patterns and Usage Scenarios

EAI solutions address the following primary patterns of Application Integration:

 Data consistency integration

 Multi-step business process integration

 Composite application integration

The EAI scenarios are described in the subsections that follow.

2.3.1 Data Consistency Integration

The objective of data consistency integration is to make data across all applications consistent.
For example, if a customer changes address in one application, that event is pushed out to other
applications so that the applications can update their databases with the current data.

The data consistency integration scenario is applicable in the situations where there is no single
system of record functioning as a source of data objects, and the applications in question
(possibly more than two) remain mutually independent when executing their business
functions. Even though there can be and often there is an actual overlap of data, there is no
logical dependency between the executing applications (such as one system providing input to
the other). The scenario is schematically depicted in the following diagram:

Application A

Datastore A

Application B

Application C

Datastore C

Datastore B

Data

Consistency

Integration

Figure 2-1 EAI Data Consistency Integration Pattern

A typical solution for the scenario is to use dissemination of updates among applications. The
dissemination can take the form of batch processing or can be achieved in a more real-time
fashion when using event-driven updates and Message-Oriented Middleware. The “Data
Synchronization” shown in the above diagram represents the dissemination of updates, either
directly or indirectly, using other components for data transformation and to perform the actual
updates. Given that this scenario uses a persistent store as its focal component, this approach is
sometimes referred to as “database-centric integration”.

2.3.2 Business Process-Based Integration

When viewed from integration perspective, execution of a multi-step business process
introduces potentially complex logical dependencies between applications that are involved in

 Enterprise Application Integration (EAI) Reference Architecture (RA)

Version 1.0 Final 6 January 2, 2014

the execution of various steps of the business process. During the execution of the process,
subsequent steps are executed using functions as provided by existing applications. Depending
on the situation, execution of the business process in question can be distributed across many
nodes or executed on a single node and the process may be either short-lived or long-lived.
Regardless of the properties of the business process however, the applications or systems used
in the process become logically dependent because it is unavoidable that outputs from one
system will be required to serve as input to another system or systems. The following diagram
illustrates this:

Business Process Engine

Business Processes

Application A Application B
Service

Component X

Business Process-Based Integration

Service

Component Y

Figure 2-2 EAI Multi-Step Process Integration Pattern

A typical solution is to use either an explicit representation of the business process supported by
a business process engine (as shown in the figure above), or – in case of distributed scenarios –
broadcasting events representing activity in the steps of the process and handling those events
by interested parties (subscribing systems) in the manner specific to those parties.

Business Process-based integration is likely to be the main integration pattern in EAI solutions
based on service-oriented architectures.

2.3.3 Composite Application Integration

In the Composite application integration scenario, new applications are composed or assembled
using either pre-existing or newly constructed components. At least some of the components in
the mix make use of separate, non-integrated applications or data stores; consequently, the
composite application becomes a vehicle of integration of those applications and data stores
with other components.

The Composite Application effectively encapsulates its internal components, not just logically,
but also at execution time: When executing, the composite application acts as a whole and it
does not finish servicing an external request until all of its internal interactions are completed.
The following diagram shows a sample composite application that encapsulates integration
between two applications and a subsequent flow to yet another application:

 Enterprise Application Integration (EAI) Reference Architecture (RA)

Version 1.0 Final 7 January 2, 2014

Application Platform

Composite Application

Application A Application B
Service

Component X

Composite Application Integration

Datastore

Figure 2-3 EAI Multi-Step Process Integration Pattern

Composite applications can fully encapsulate a business process or become a step in a multi-
step business process. In this case, standard connection-oriented technical mechanisms
applicable to the applications in questions and their platforms are used to provide connectivity
services.

2.3.4 Related Patterns

The patterns for EAI listed above are similar to but distinct from the patterns usually brought up
when integrating components within single application architecture. The three patterns
typically described in that context are data-level integration, business logic-level integration and
presentation/UI-level integration. However, these scenarios belong to application architecture
rather than enterprise architecture, despite similarity in names and an overlap in the approach
to integration and concepts. There are cases when a given integration pattern can be useful
both for an enterprise architecture and a corresponding solution architecture – please see the
section “EAI-Related Patterns ” for a short discussion of these.

2.4 Key Capabilities of EAI Solution

The key capabilities of EAI are listed below:

 Communication that reliably moves messages among endpoints

 Support for transformation of canonical documents and messages (XML, EDI, industry
standards and WSDL)

 A repository for the storage, browsing and management of message definitions and
transformations

 Interoperability with a process execution engine for implementing multistep business
process integration

 Enterprise Application Integration (EAI) Reference Architecture (RA)

Version 1.0 Final 8 January 2, 2014

 Support for applying optional intermediary functions and business rules to in-flight
messages

 Adapters for applications, databases, A2A and B2B protocols, cloud-to-on-premises
application integration APIs, etc.

 Security mediation function for federated identity management

 Interoperability of platform components

 Integration with Enterprise Identity and Access Management

 Integration with Enterprise Information Integration (EII) platform

 Support for fundamental Web and Web services standards

 Support for EDI and domain-specific data/document transfer standards (such as HL7 and
NIEM)

2.5 Key Capabilities of an EDI Solution and Convergence of EAI and EDI

The key capabilities of EDI include the following:

 Communication that reliably moves EDI messages among endpoints through FTP, VAN
(Value Added Networks), VPN, EDIINT AS1, AS2 and AS3, ebXML (including ebMS),
RosettaNet RNIF 1.1 and 2.0, cXML, CIDX Chem eStandards 4.0, and SOAP with attachments

 Support for data mapping and transformation between standards-based EDI (ANSI X12,
UN/EDIFACT, UCS standards as interpreted by industries such as retail) and internal
application data formats

 Business rule execution to validate data and message formats

 A repository for the storage, browsing and management of message definitions and
transformations

 Integration with other enterprise applications through SOA, BPM, or through standard
message/API based interface

 Support for Transactions

 Interoperability of platform components

 Integration with Enterprise Identity and Access Management for Policy Enforcement and
Security Mediation

 Integration with Enterprise Information Integration (EII) platform

Vendors and IT Organizations realized that both EAI and EDI require similar solution capabilities,
which include the following:

 Communication

 Data mapping and transformation

 Intermediary functions and business rules

 Repository

 Integration with enterprise applications

 Interoperability

 Overlapping skills

The result is the convergence of functionality in EDI and EAI tools leading to the development of
a new class of products capable of handling traditional EDI and EAI. Consequently, this
Reference Architecture treats the traditional area of EDI as part of EAI rather than a distinct area
of its own.

 Enterprise Application Integration (EAI) Reference Architecture (RA)

Version 1.0 Final 9 January 2, 2014

2.6 Components of EAI Solution

In an EAI solution, the following main groups of components can be identified:

 Connectors – which are responsible for establishing of a connection between systems and
obtaining data through interactions proper to the target system

 Adaptors – which are responsible for transformations of data or protocol between systems

 Enterprise Business Objects (EBOs) – which are enterprise-level entities representing key
data entities in the enterprise

 Transformation components – which provide for semantically correct translations between
different representations of data

 Enterprise Service Bus (ESB) – which provides for a mechanism to deliver and distribute data
between data producers on one hand, and data consumers or subscribers on the other
hand.

The ESB typically contains additional components as follows:

 Service Registry and Repository

 Repository for Message and Transformation Definitions

 Integration Workflow Execution Engine

 Integration Modules

A typical role for the EAI Platform is to be placed in-between the Front-end Systems and the
Back-end Systems and their respective service logic and business processes, as shown in the
following diagram:

 Enterprise Application Integration (EAI) Reference Architecture (RA)

Version 1.0 Final 10 January 2, 2014

EAI Platform

Front-end Systems

Service Consumer Logic

Back-end Systems

Service Logic

Adaptors/ Connectors

Adaptors/ Connectors

Enterprise Service Bus

Data Transformation

Data Transformation

Enterprise Business Objects

Enterprise Business Objects

Figure 2-4 EAI Components Overview

The components shown in the above diagram are further described in the subsections that
follow.

2.7 Front-End Systems in EAI

The Front-end Systems involve, from the EAI’s perspective, various kinds of Consumers of
Service. They contain their Service Consumer Logic which remains de-coupled from service
implementation and location. Moreover, the Front-end Systems can discover and consume
services through the EAI platform.

Most frequently encountered components of the Front-End Systems include the following:

 Mainframe

 COTS, ERP systems

 Enterprise Content Server (ECS)

 MDM Server

 EDI Gateway

 FTP, SFTP and similar file transfer servers

 Enterprise Application Integration (EAI) Reference Architecture (RA)

Version 1.0 Final 11 January 2, 2014

 Composite applications

 Cloud Service

The above elements are shown in the following diagram:

Front-end

Systems

Mainframe COTS/ERP
Process

Server
ESB

Enterprise

Content

Server

MDM

Server

EDI

Gateway
FTP Server

Cloud

Service

Composite

Application

Service Consumer Logic

Figure 2-5 Front-End Systems in EAI

2.8 Back-End Systems in EAI

The Back-end Systems involve, from the EAI’s perspective, various kinds of Providers of Service.
They contain their Service Logic which is decoupled from all consumers of the Service. Just as
the Front-end Systems can discover and consume services through the EAI platform, the Back-
end Systems can be discovered and provide services through the EAI platform. In cases when
the component providing a service requires authentication, authorization or identity
corroboration, it is responsibility of the EAI platform to supply those to the Back-end System.

Typical components of the Back-end systems are shown in the following diagram:

Back-end

Systems Mainframe COTS/ERP Database
External

Data Hub

External

ESB/

Gateway

Process

Server
ESB

Enterprise

Content

Server

MDM

Server

Cloud

Service

Service Logic

Figure 2-6 Back-End Systems in EAI

Note that a given system may function as a Service Provider or a Service Consumer, depending
on the context and the process or transaction in which it participates.

2.9 Adaptors and Connectors in EAI

Adaptors and Connectors are components responsible for encapsulating knowledge about the
system being integrated using these components. They differ, however. Connectors typically
deal with lower level challenges of connectivity, interaction and obtaining data in the format
and with the meaning as provided by the Service Producer system. In turn, Adaptors provide for
transformations between the APIs of the calling system (Service Consumer) and the Service
Provider. Responsibilities of an Adaptor are different and separate from the responsibilities of
Connectors or data transformation components, even if the adaptor may use some form of data
transformation. Both Connectors and Adaptors can become surprisingly complex, especially
when built for complex interactions or APIs using disparate technologies. A number of vendors
provide adaptors most often used in a given area, as in the case of e.g., the ESB or in Portals
with adaptors to common applications used in the context. Actual implementations of Adaptors
can vary from COM and .Net-based languages and libraries, and JVM-based languages and
libraries on one hand to Web Services on the other hand.

At the architectural level, Adaptors and Connectors can be characterized as follows:

 They provide a bridge between ESB-aware and ESB-unaware end points

 They allow ESB-unaware clients to use ESB-aware services and ESB-aware clients to use ESB-
unaware services

 Enterprise Application Integration (EAI) Reference Architecture (RA)

Version 1.0 Final 12 January 2, 2014

 They are critical for enterprise-wide application interoperability especially when legacy or
proprietary COTS applications are involved

 They are required when built-in connectivity from ESB to end point is not available

Note that, in contrast to Connectors, Adaptors either contain or invoke data transformation
logic and related business rules.

The typical Adaptors in the enterprise are shown in the following figure:

MQ

Adaptor

Application

API

Adaptor

JMS

Adaptor

Web

Services

Adaptor

JCA

Resource

Adaptor

JDBC

Adaptor

EDI

Adaptor

FTP

Adaptor

Flat File

Adaptor

Adaptors/Connectors

Cloud API

Adaptor

Figure 2-7 Adaptors and Connectors in EAI

The figure shows the following components:

 Message-Oriented Middleware (MOM) Adaptors, such as JMS-based or product-specific
adaptor APIs (e.g., for MQ)

 Web Services Adaptors

 EDI Adaptors for specific EDI message formats

 Cloud API Adaptors

 JDBC Connectors for standardized interactions with data stores

 (S)FTP Connectors for interactions with (secure) ftp servers, etc.

2.10 Enterprise Business Objects and Data Transformations in EAI

Enterprise Business Objects (EBOs) are application-neutral specifications of entities required for
enterprise business processes. It is preferable to have EBOs reflect a single canonical object
model rather than to use a number of representations for a single entity. Adopting EBOs has the
following advantages for application integration:

 EBOs reduce the number of data transformations required

 EBOs facilitate integration of disparate applications by decoupling service consumer
data/message structures from service provider data/message structures

Adoption of EBOs requires transforming some of the data from some sources into the canonical
form. This is achieved using Data Transformation Modules, which can be treated as dedicated
components to transform data /message structures to/from Enterprise Business Objects.

However, when integrating legacy applications, it is not realistic to expect them to be EBO-
aware. Hence the need for Data Transformation components, which are responsible for
translating one data representation (typically specific to a given application) into another data
representation, possibly a common one, like EBO. The following figure shows the context for
Data Transformation components and EBOs in a data-centric integration scenario:

 Enterprise Application Integration (EAI) Reference Architecture (RA)

Version 1.0 Final 13 January 2, 2014

Source System

Target System

EAI Platform

Adaptors/ Connectors

Enterprise Service Bus

Data Transformation

Adaptors/ Connectors Data Transformation

EBOs

EBOs

Figure 2-8 Enterprise BOs and Data Transformation in EAI

2.11 Enterprise Service Bus

The Enterprise Service Bus in EAI is a focal element of any large-scale integration effort given its
responsibility for reliably transporting data and messages from Producers to Consumers. The
Bus has a number of responsibilities, including the following:

 Handling messages, which includes validating, enriching, transforming, and similar
operations on messages as such (in contrast to their routing, making available, etc.)

 Executing business rules affecting either routing of messages or their transformations

 Enforcing security mediation and supporting policy enforcement

 Supporting execution of integration process flow by using a business process/workflow
engine.

The ESB groups a number of components which are crucial for a successful EAI, including the
following:

 Service Registry and Repository – where information about available services is stored and
available for retrieval and identification

 Message Routing, which can route, in function of the message and external business rules, a
given message from the sender to a consumer or to multiple consumers

 Service Invocation, which allows to invoke a particular kind of service (e.g., Web Service)
given invocation data and information about the service interface

 Enterprise Application Integration (EAI) Reference Architecture (RA)

Version 1.0 Final 14 January 2, 2014

 Business Process/Workflow engine, which provides for execution of declaratively specified
and validated business process definitions

 Aggregations and temporary storage to support technical aspects of ESB operation, such as
guaranteed delivery or specific data payload transformations.

The elements pointed out in this subsection are schematically represented in the following
figure:

Enterprise Service Bus (ESB)

Message

Validation

Message

Enrichment

Message

Transformation

Message Routing/ Service Invocation

Integration Business Process and Workflow

Policy

Enforcement

Business

Rules

Message

Bindings

Service

Registry

and

Repository
Composite Business Services

Enterprise Business Services

Message and

Transformation

Definitions

Aggregations

and

Temporary

Storage

Security

Mediation

Figure 2-9 ESB in EAI

The parties interacting using the ESB in EAI can be various applications providing dedicated
services, or designated Enterprise Business Services, or combinations of the two.

 Enterprise Application Integration (EAI) Reference Architecture (RA)

Version 1.0 Final 15 January 2, 2014

3 EAI Reference Architecture Description

This section provides a focused description of EAI Reference Architecture (RA), using three
views:

 Conceptual View, which provides a summary of logical-level building blocks for EAI as
presented in the Section 2 above

 Logical View, which provides an overview of relationships and interactions between
components in an EAI solution for specific usage scenarios

 Deployment View, which illustrates the distribution of processing and components across
nodes in the system.

Each of the above views is described in the subsections that follow.

3.1 Conceptual View of EAI RA

The Conceptual View of EAI, shown in the figure below, brings together all major components of
an EAI solution that have been described separately in the Section “Components of EAI
Solution” earlier in the document. The diagram shows three top-level elements:

 Back-end Systems

 Front-end Systems

 EAI Platform

The EAI Platform element contains the following components portrayed in a layered fashion:

 Adaptors and Connectors

 Data Transformation and Enterprise Business Objects

 ESB and its components

Note the following elements of the Conceptual View:

 ESB is central to the Conceptual View of EAI

 The layering of components above ESB in the view (towards Front-end systems) is
symmetrical with the layering of components below ESB in the view (towards Back-end
systems): in both cases, the Adaptors and Connectors layer and the Data Transformation
and Enterprise Business Objects provide for interactions between the ESB and Back-end
Systems on one hand, and between the ESB and Front-end Systems on the other hand

 A number of components present in the Back-end Systems layer are also present in the
Front-end Systems layer, given that such components can validly function in either layer.
One typical exception is database/persistence components, which usually are not
considered as part of Front-end Systems.

 Enterprise Application Integration (EAI) Reference Architecture (RA)

Version 1.0 Final 16 January 2, 2014

Enterprise Service Bus (ESB)

Back-end

Systems

Front-end

Systems

Mainframe COTS/ERP Database
External

Data Hub

External

ESB/

Gateway

Process

Server
ESB

Enterprise

Content

Server

MDM

Server

MQ

Adaptor

Application

API

Adaptor

JMS

Adaptor

Web

Services

Adaptor

JCA

Resource

Adaptor

JDBC

Adaptor

EDI

Adaptor

Mainframe COTS/ERP
Process

Server
ESB

Enterprise

Content

Server

MDM

Server

EDI

Gateway
FTP Server

Cloud

Service

FTP

Adaptor

Cloud API

Adaptor

Data Transformation

Enterprise Business Objects

MQ

Adaptor

Application

API

Adaptor

JMS

Adaptor

Web

Services

Adaptor

JCA

Resource

Adaptor

JDBC

Adaptor

EDI

Adaptor

FTP

Adaptor

Flat File

Adaptor

Data Transformation

Enterprise Business Objects

Adaptors/Connectors

Adaptors/Connectors
E

A
I
P

la
tf

o
rm

Cloud

Service

Flat File

Adaptor

Cloud API

Adaptor

Composite

Application

Message

Validation

Message

Enrichment

Message

Transformation

Message Routing/ Service Invocation

Integration Business Process and Workflow

Policy

Enforcement

Business

Rules

In
te

g
ra

ti
o

n
 D

e
v

e
lo

p
m

e
n

t
a

n
d

 A
d

m
in

is
tr

a
ti

o
n

 T
o

o
ls

Message

Bindings

Service

Registry

and

Repository

Service Logic

Service Consumer Logic

Security and Governance

Composite Business Services

Enterprise Business Services

Message and

Transformation

Definitions

Aggregations

and

Temporary

Storage

Security

Mediation

Figure 3-1 EAI Reference Architecture – Conceptual View

 Enterprise Application Integration (EAI) Reference Architecture (RA)

Version 1.0 Final 17 January 2, 2014

3.2 Logical View of EAI RA

The following diagram shows high-level typical interactions among components of an EAI
solution for a generic service invocation scenario. It should be noted that the interactions shown
are logical abstractions representing typical interactions. In practice, however, due to the
specific integration pattern employed and due to the physical packaging of EAI logical
components and services in the specific system software products selected, the component
interactions (and also the names of components and services) may change. Therefore, this
section is intended to enable the reader understand how EAI components logically realize a
given scenario or use case, and use that knowledge to evaluate specific technology choices to
provide desired capabilities.

 Enterprise Application Integration (EAI) Reference Architecture (RA)

Version 1.0 Final 18 January 2, 2014

Front-end Systems

Service Consumer Logic

Back-end Systems

Service Logic

Adaptors/ Connectors

Enterprise Service Bus

Data

Transformation

Adaptors/ Connectors
Data

Transformation

Integration Business Process and Workflow

Policy

Enforcement

Message

Validation

Business

Rules

Message

Enrichment

Message

Transformation

Message and

Transformation

Definitions

Enterprise

Business

Objects

Message Routing/

Service Invocation

Service

Registry and

Repository

Message

Bindings

Security

Mediation

Id
e

n
ti

ty
 a

n
d

 A
cc

e
ss

M

a
n

a
g

e
m

e
n

t
P

la
tf

o
rm

E
n

te
rp

ri
se

D

e
ci

si
o

n

M
a

n
a

g
e

m
e

n
t

(B
u

si
n

e
ss

 R
u

le
s)

1

2

4 5

5a
5b

5c

6

6a 6b

7

7a
7b

3

3a

8

8a

9

10

10a 10b

11

12
1a 11a

Figure 3-2 EAI Reference Architecture – Logical View

 Enterprise Application Integration (EAI) Reference Architecture (RA)

Version 1.0 Final 19 January 2, 2014

The following table summarizes interactions portrayed in the above diagram.

Table 3-1 High-level interactions among EAI components

Label Description

(1) A Front-end System sends a request for invoking a service through its Service
Consumer Logic to the corresponding Adaptor/ Connector. If the front-end
system is an ESB-aware system, an Adaptor is not necessary.

(1a) The Adaptor/ Connector performs Data Transformation according to pre-
defined rules typically using a data transformation component. This data
transformation is done to convert the internal representation of data (in the
front-end system to the externally published request or message format of
the service.

(2) The Adaptor/ Connector sends the formatted service request to the
Enterprise Service Bus (ESB) using a protocol/format through which the
service is made available (published). It should be noted that this service
request may be intercepted by a Service Gateway in a distributed
environment. In this case, the gateway performs basic security checks before
routing the request to the ESB. Once the request reaches the ESB, the
Integration Business Process and Workflow is initiated.

(3), (3a) During this step, the message bindings and information in the Service
Registry/ Repository will be used to identify the target service including its
location, invocation protocol etc.

(4) The ESB enforces any defined security policies by invoking the Policy
Enforcement component before further validating, enriching, transforming
and routing the request to the service. The Policy Enforcement component
may interact with the Enterprise Identity and Access Management platform
for policy decisions (not shown in figure).

(5), (5a),
(5b), (5c)

ESB validates the request message as a whole. Message Validation is
performed to confirm the message payload to the applicable pre-defined
message format and to validate the data items in the payload confirm to the
data items specified in the message format. In addition to validating the
message using definitions such as an XSD schema definition, the ESB may
execute pre-defined Business Rules to further validate the data items in the
message. Execution of Business Rules may be performed by interacting with
the Enterprise Decision Management platform.

(6), (6a),
(6b)

During this step, the request message may be enriched, for example, to add
additional attributes (typically derived attributes) required by the target
service and/or the attributes associated with quality of service.

(7), (7a),
(7b)

During this step, the ESB transforms the incoming message to a generic
structure which includes transforming the data items from the request

 Enterprise Application Integration (EAI) Reference Architecture (RA)

Version 1.0 Final 20 January 2, 2014

message to the application-neutral data model represented by the enterprise
business objects, if this transformation is not done by the adaptor/converter.

(8), (8a) During this step, a security token will be created in a format required by the
target service by interacting with the Enterprise Identity and Access
Management platform.

(9) During this step, ESB constructs the request message in a format in which the
target service accepts the requests. If the target service is a composite
service, the original request will be broken down into multiple requests. ESB
then routes the message to the target service. It should be noted that the
original request for service may be for a composite service, in which case, ESB
invokes the elementary services that constitute the composite service using
the pre-defined service invocation flow.

(10),
(10a),
(10b)

The Adapter/Connector corresponding to the target service receives the
request, performs data transformation necessary, invokes the target service
and sends the response back to the ESB.

(11) ESB sends the response back to the Adaptor/Connector of the Front-end
System.

(11a) Adaptor/Connector performs the data transformation necessary to convert
the response into the format the required by the front-end system.

(12) The front-end system receives the response.

3.3 Deployment View of EAI RA

This subsection is to be completed in a future release. It is intended to show best-practice-based
system topologies and implementation patterns of EAI, based on existing realizations of the EAI
RA in the state.

 Enterprise Application Integration (EAI) Reference Architecture (RA)

Version 1.0 Final 21 January 2, 2014

4 EAI Implementation Guidelines

This section is intended to provide descriptions of challenges and pitfalls in the EAI domain and
basic guidelines that can help implement an EAI solution successfully.

The section is expected to grow over time in subsequent releases of the document.

4.1 Areas of Challenge in EAI

As already indicated in the section 2 earlier in the document, the goal of integrating applications
involves a number of interoperability challenges, related to technology, existing design and
architectures, and also business process and organizational changes.

EAI experience shows that it is technology-related challenges that are most readily identified
when considering integration and interoperability issues in the systems to be integrated. This is
obviously a crucial area in EAI, but not the only one. There are additional areas of investigation
when introducing EAI: design and architectural interoperability challenges, and Business Process
and organizational interoperability challenges. Ignoring or downplaying these other challenges
can have a significant negative effect on an EAI implementation.

4.2 Tacit Assumptions as Common Integration Pitfall

There is a common facet in most types of challenges encountered in EAI that affects the rates of
success/failure in interoperability and integration solutions: it is tacit assumptions that were
made (possibly validly) in the context of an application or a system to be integrated considered
on its own as contrasted with the new context imposed by the integration. Those tacit
assumptions introduce significant risk when integrating, especially as long as they remain tacit.

There are a number of general categories of assumptions affecting interoperability and
integration, as follows:

 Assumptions about the basic characteristics of the components being integrated, including
their control and transactional models

 Assumptions about the nature of available connectors and adaptors and their ramifications

 Assumptions about the overall architectural structure within which the integration is to take
place

 Assumptions about available software construction processes, including development
environment and platform, testing approach, build environment, etc.

It is a good practice to include examination of potential tacit assumptions of the kinds listed
above in any EAI effort. Without proper planning, such assumptions may possibly remain
hidden and not identified until late in the implementation of EAI, for example, until the stage of
system test, or even until production if the testing of the EAI implementation is insufficient.
Discovering these so late in the process is not desirable from the cost and time frame point of
view.

Taking components as an example, focusing early on the following facets of the integration
mitigates risks resulting from unidentified tacit assumptions:

 What are the respective assumptions and dependencies of the components in question with
respect to the infrastructure on which they depend?

 What are the assumptions about the components in question in the applications and
systems that use these components?

 Enterprise Application Integration (EAI) Reference Architecture (RA)

Version 1.0 Final 22 January 2, 2014

 What are the assumptions about the components in question that can be extracted from
the way peer components interact one with another?

An analogous approach applies to identifying tacit assumptions in the area of architecture of the
systems being integrated, and when considering integration of business process.

4.3 Architectural Mismatch in EAI

In the context of integration efforts at enterprise level, it is useful to introduce the notion of
“architectural mismatch”, which gained some currency in literature of the topic and in practice.
The creators of the term defined “architectural mismatch” as the phenomenon of having
“incompatible assumptions that each party had made about its operating environment” [14]. It
is important to note that even though the assumptions are likely to be valid within the original
constraints and scope of the relevant system, they may become invalid in a broader scope or be
simply incompatible with a similar set of (architectural) assumptions that were made in other
systems. Moreover, the assumptions in question may be known only partially, or are
misidentified.

The guidelines to deal with architectural mismatch that can be offered can be grouped as
follows:

 Detecting the mismatch

 Repairing the mismatch

 Preventing the mismatch

The above areas are discussed in the subsections that follow.

4.3.1 Detecting Architectural Mismatch

Detecting architectural mismatches remains a domain of tentative heuristics rather than well-
established procedures. The areas for examination when trying to detect mismatches include
the following:

 The (original) business context of the system in question, which may help identify crucial
capabilities and assumptions for the system

 Existing architectural and design documentation – ranging from informal textual
descriptions to more rigorous notations (e.g., using UML, ArchiMate, WDSL, programming
language APIs, etc.). Depending on the age and rigor of the description, the expected
usefulness of the documentation may vary.

 Existing interfaces with other systems or application, which may help describe the actual
working interaction mechanisms

 Passive collecting of data or payloads that get processed by the system being examined as a
result of specific actions of interest

 Active testing of the interactions, e.g., by using targeted interactions tests, to corroborate
existing understanding of assumptions in a given system

4.3.2 Repairing Architectural Mismatch

There are a number of architectural and software design patterns that are useful when repairing
architectural mismatch. The most frequently used patterns include the following:

 Adapters or Wrappers, which provide a compatible interface to a component with
incompatible interface/implementation

 Enterprise Application Integration (EAI) Reference Architecture (RA)

Version 1.0 Final 23 January 2, 2014

 Mediators, which encapsulate how a set of components interact

 Bridges, which decouple the interface of a component from its implementation.

The above patterns, used in isolation or used in combination, typically provide an adequate way
of repairing a mismatch. Note also that these patterns, even though they originate in Object-
Oriented languages, are also applicable as architectural patterns applicable to architectural
building blocks, rather than only programming language-level artifacts.

In context of SOA, however, wrapping a system or an application as a Service is of special
interest, because it fits the overall CEAF architectural style and at the same time allows for
architectural decoupling with important practical ramifications: it allows for future replacement
or modifications of the service-encapsulated system without affecting the service-imposed
contract and the systems that rely on that contract.

4.3.3 Preventing Architectural Mismatch

The most effective ways of preventing the architectural mismatch typically involve the following
approaches:

 Constraining of the architectural and design choice space, by adopting, correspondingly,
applicable reference architectures and applicable design patterns

 Explicitly documenting architectural and design decisions that were made in the
construction of the system or that were discovered in the examination of the system

 Identify solution-level integration patterns used in a solution (see e.g. [15] for an extensive
collection of such patterns)

 Adopting and following well-known standards or quality, well-described APIs

 Documenting and keeping up-to-date specifications of the system using a standard
applicable notation, such as UML or ArchiMate, accompanied by structured natural
language descriptions.

In case of enterprise architectures, the preferred specification language is ArchiMate, and the
preferred reference architectures are those specified by CEAF 2.0.

4.4 EAI-Related Patterns and Strategies

There are a number of publications related to EAI patterns. In many, if not most cases, the
patterns described in those sources are arguably solution architecture patterns rather than
enterprise architecture strategies for EAI. Compared to the EAI patterns, the concept of
“integration strategies” in EAI is much broader, because it encompasses not only patterns, but
also processes, techniques and solutions applicable to EAI. A tentative taxonomy of such
architecture integration strategies presented in [8]. This is notable because the classification
presents over 25 specific EAI approaches that are derived from composing (with additional
constraints) just three core integration strategies:

 Controller “coordinates and mediates the movement of information between components
using some predefined decision-making process”. The controller coordinates interactions
explicitly and it needs to be aware of identities of the components involved in the
interaction.

 Translator “converts data and functions between component formats, without changing the
content of the information”, and without being aware of the source or destination of the
data [8].

 Enterprise Application Integration (EAI) Reference Architecture (RA)

Version 1.0 Final 24 January 2, 2014

 Extender adds new features and functionality, and enhances component capabilities.
However, extending components capabilities typically means involving a variation of
Controller or Translator or both.

The following figure shows a partial taxonomy of integration approaches, adapted from [8].

Translator-ExtenderController-Translator-

Extender
Controller-Translator

.........

Controller Translator

Extender
Adaptor

Converter

Broker

Facade

Bridge

Filter

Selector

Weighted

...

Blackboard

Mediator

Db

Gateway

App

Gateway
Proxy

Workflow

Manager

Client-Server

Broker
Wrapper Decorator

Sequential

Filter

 Figure 4-1 Taxonomy of Integration Approaches

The above figure shows core integration strategies (Controller, Translator, Extender) and mixed
strategies (Controller+Translator, Translator+Extender, Controller+Translator+Translator). Also,
some of the more specific variations of a strategy, targeted at addressing given constraints in an
integration problem, are shown. For example, Mediator is a variation of Controller+Translator
strategy where loose coupling is required in order to coordinate interactions between groups of
objects; Wrapper strategy is a variation of Translator+Extender that can be used to encapsulate
a legacy system and to provide new functions not present in the encapsulated system, in a way
that is transparent to the user [8]. However, adopting such form of conceptualizing integration
strategies is subject to future discussions and feedback from Enterprise Architects.

 Enterprise Application Integration (EAI) Reference Architecture (RA)

Version 1.0 Final 25 January 2, 2014

5 Glossary

Adaptors are small, focused programs that expose functionality and/or data in a legacy
application.

Application Architecture defines the major applications or service components needed to
manage data and support business functions.

Architecture is a set of design artifacts, or descriptive representations, which is relevant for
describing an object such that it can be produced to requirements (quality) as well as
maintained over the period of its useful life (change). [John Zachman & adopted by the Federal
Chief Information Officer Council]

Connectors are small, focused programs that encapsulate logical and physical connections
between separate components that need to interoperate.

Data Transformations are focused programs that encapsulate changing the schema or
properties in the input data to produce the desired output; they may involve EBOs as source or
the target of the performed transformations.

EAI, or Enterprise Application Integration, is giving applications that were designed
independently one from another the ability to interoperate in order to carry out a desired
business function or process.

EBOs, or Enterprise Business Objects, are technology-neutral specifications of entities required
for enterprise business processes.

EDI, or Electronic Data Interchange, is the transfer of structured data, by agreed message
standards, from one computer system to another without human intervention.

Reference Architecture models the abstract architectural elements in the domain independent
of the technologies, protocols, and products that are used to implement the domain.

Service Component is an actual application, program or subsystem providing implementation of
a Service treated as a contract

 Enterprise Application Integration (EAI) Reference Architecture (RA)

Version 1.0 Final 26 January 2, 2014

6 References

State and Federal Documents

A. State of California, California State Information Technology Strategic Plan, November 2004
B. State of California, California Performance Review Report
C. Chief Information Officers Council, Federal Enterprise Architecture Framework, Version 1.1,

September 1999
D. Chief Information Officers Council, A Practical Guide to Federal Enterprise Architecture,

Version 1.0, February 2001
E. Federal Enterprise Architecture Program Management Office, The Business Reference

Model, Version 2.0, June 2003
F. Federal Enterprise Architecture Program Management Office, The Service Component

Reference Model, Version 1.0,
G. Federal Enterprise Architecture Program Management Office, The Technical Reference

Model, Version 1.1, August 2003
H. Federal Enterprise Architecture Program Management Office, The Data Reference Model,

Version 1.0, September 2004

Books and Papers

1. B. Gold-Bernstein, W. Ruh, Enterprise Integration: The Essential Guide to Integration
Solutions, Addison-Wesley Professional 2004

2. Themistocleous, M., and Irani, Z., Benchmarking the Benefits and Barriers of Application
Integration, Benchmarking: An International Journal, 2001, Vol.8,No. 4, pp.317-31.

3. Xu He; Hongqi Li; Qiaoyan Ding; Zhuang Wu, The SOA-Based Solution for Distributed
Enterprise Application Integration, Computer Science-Technology and Applications, 2009.
IFCSTA '09. International Forum on , vol.3, no., pp.330,336, 25-27 Dec. 2009
doi: 10.1109/IFCSTA.2009.321

4. Gleghorn, R., Enterprise application integration: a manager's perspective, IT Professional ,
vol.7, no.6, pp.17,23, Nov.-Dec. 2005, doi: 10.1109/MITP.2005.143

5. Garlan, D.; Allen, R.; Ockerbloom, J., Architectural Mismatch or why it's hard to build systems
out of existing parts, Software Engineering, 1995. ICSE 1995. 17th International Conference
on , vol., no., pp.179,179, 23-30 April 1995

6. Garlan, D.; Allen, R.; Ockerbloom, J., Architectural Mismatch: Why Reuse Is Still So Hard,
Software, IEEE , vol.26, no.4, pp.66,69, July-Aug. 2009, doi: 10.1109/MS.2009.86

7. G. Hohpe, B. Woolf, Enterprise Integration Patterns: Designing, Building, and Deploying
Messaging Solutions, Addison Wesley 2003

8. R. Keshav, R. Gamble, Towards a taxonomy of architecture integration strategies, in
Proceedings of the third international workshop on Software architecture, 1998, pp. 89–92.

9. G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing, Building, and Deploying
Messaging Solutions. Addison-Wesley Professional, 2004

Web Sites

a. California State Chief Information Officer, California Information Technology Council,
Committees http://www.cio.ca.gov/ITCouncil/Committees/Committees.html

b. Gartner IT Glossary, http://www.gartner.com/it-glossary
c. Information service patterns series by D. G. Sauter,

http://www.ibm.com/developerworks/webservices/library/ws-soa-infoserv1/index.html

http://www.cio.ca.gov/ITCouncil/Committees/Committees.html
http://www.gartner.com/it-glossary
http://www.ibm.com/developerworks/webservices/library/ws-soa-infoserv1/index.html

 Enterprise Application Integration (EAI) Reference Architecture (RA)

Version 1.0 Final 27 January 2, 2014

7 Document History

Table 7-1 Document History

Release Description Date

Version 1.0 Draft Initial creation 06/03/2013

Version 1.0 Second Draft Revised based on internal review comments 06/21/2013

Version 1.0 Final Draft Addressed EAC review comments 10/21/2013

Version 1.0 Final Final version 01/02/2014

